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AbSlmcL As a lypical model exhibiting non-linear excitations, the mntinuum model 
for mnjugated polymers is sludied in lhe presence of a single impurity. Using the 
unperturbed Green functions the scatlering matrix of the full problem is calculated and 
information about the mutual influence of non-linear and impurity intragap Slates is 
extracted. As the main difference we 6nd that the lacalizalion length of the impurity 
stale i., delermined mainly by the potential slrengrh whereas for be  non-linear Stale il 
is an intrinsic pmpeny. 

1. Introduction 

The Peierls mechanism as the driving instability for a metal-insulator transition in 
quasi-onedimensional systems has attracted quite a lot of attention in recent years. 
The formulation of this mechanism as an intrinsic non-linear problem is of interest 
also from a more general point of view and has been quite successfully applied to 
the existence and physical properties of non-linear excitations in conjugated polymers 
(for a review see [l]). In these materials with semiconductor gap of the order of 1 
eV these non-linear excitations are electronically characterized by a localized state 
deep within the gap, the signatures of which can be detected experimentally. It is the 
existence of these gap states which makes these systems so attractive, also from an 
application point of view. 

On the other hand, it is well known that in more conventional semiconductor 
intragap states can be introduced by doping the material with impurities. Therefore, 
one might ask whether there is any mutual influence of both mechanisms for the 
formation of localized electronic states. 

The problem of the Peierls instability in the presence of impurities has been 
studied before ([2, 31, for short reviews see (41) with mainly averaged quantities being 
focused on. AI1 averaging procedures used so far have the shortcoming of restoring 
full translational invariance for the system under consideration. Thus a detailed 
analysis of the interaction of a single impurity and single non-linear excitation, both 
of which break translational invariance, could not be performed. Some attempts in 
this direction have been made [SI through a numerical simulation, including even 
a mobile non-linear excitation. In addition a linear response calculation has been 
made [SI for the change of a homogeneous structure around the impurity. Also, the 
change of the structure of the kink in a dirty background has been studied [6], i.e. the 
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interaction with the impurities has been taken into account only as an average. Here 
we want to focus on the influence of a single impurity on the structures of both kink 
and polaron as typical non-linear excitations in these systems in a non-translational 
invariant situation. 

Fortunately the widely used 'ILM model [I as the long wavelength (continuum) 
limit of the underlying lattice description can be solved exactly, Le. the wavefunctions 
for all electronic states (valence and conduction bands as well as localized intragap 
states) are known in all cases: homogeneous ground state, kink and polaron excitation. 
Consequently the Green function can be calculated, (the results are compiled in the 
appendix for reference). The interaction with a single impurity can mnsequently be 
treated with the help of the scattering matrix, which is done in section 2 From the full 
Green function one can then extract information about the impurity states (section 
3) as well as the non-linear intragap states (section 4) and their mutual interference. 
We close with some prospects on the many-impurity problem. 

2. Model and general formalism 

The electronic part of the coupled electron-phonon system is described within the 
TLM model [7] by 

H ,  = dz$+(z )h (z )$ (z )  h ( z )  = -iu3az + A ( z ) u ,  (1) 

if no impurities are present. Together with a potential V ( z )  due to an impurity the 
electronic Green function satisfies the equation of motion 

J 

( i E - h ( z ) ) G ( z , z ' ; E )  = 6(z -z ' )+V(1)G(z , z ' ;E ) .  (2) 

The corresponding Dyson equation in reciprocal space (with the unperturbed 
functions I,!>) then reads 

Note that in the presence of a single kink or polaron the translational invariance is 
broken so that Go( I, z'; E) depends on both I and I' and not only on the difference 
z - z'. Since the Green function in reciprocal space is given by 

Gpp, = dzdz'$:(z)G(z,z')$p,(z') (4) J 
with + p ( ~ )  the correct eigenfunctions, even with kinks or polarons present it is 
diagonal in the indices 

qP, = S P p , q , .  (5) 

Now, for a single impurity located a t  z = z,, ie. V(z )  = V6(z - z,) and iterating 
equation (3) we find 

GPp, = 6pp!C$ + q t p p , q ,  (6) 
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with scattering matrix 

Pansforming back to real space with (Al) we obtain finally 
tpp, (z i )  = +):(zi)VIl- @ ( z ~ , ~ i ; E ) V l - ' ~ ~ , ( z , ) .  (7) 

G(z , z ' ;E )  = c U ( z , z ' ; E ) + @ ( z , z , ; E ) i ( z , ; E ) ~ ( z , , z ' ; E )  (8) 
with 

i =  V[1- @(zl,zI; E ) V ] - ' .  
From (8) we can now determine the existence of additional hound states in the 
presence of an impurity as poles of the t-matrix as a function of energy, as well 
as their spatial extension, through the zdependence of the corresponding spectral 
weight. ?he necessary unperturbed Green function G(") for all interesting cases: 
homogeneous ground state, kink and polaron excitation, respectively, are compiled in 
the appendix. 

3. Impurity state 

For simplicity we present a detailed discussion for the case of a bond impurity, i.e. 
V = Uo, in our notation. In the many-impurity situation this turned out to he 
the more interesting case, as we then have the possibility of suppression of localized 
impurity states [8]. 

Due to the property (A12) the poles of the 1-matrix are given in this special case 
by 

c = (1 + U"4)/2U = 1/2u (9) 
with different coefficients c of @ (A12) to be used for the homogeneous, kink and 
polaron cases, respectively. 

Also the spatial extent in general is given through the unperturbed Green function 
G"(z,zI). From the expressions for G" and the general formula (8) it is clear that 
the characteristic length of the localized impurity state is governed by the exponential 
in @(z, z'). Therefore once we have determined the position of the impurity state 
in the gap we know its localization length. 

3.1. Ground sfafe 
For completeness we start with the results for an  impurity in a homogeneously 
dimerized structure, which have been given earlier. With c from (A6) the impurity 
state at w is given by [SI 

J ( l -wZ)=-u  (10) 
which has a solution only if the phase of the order parameter at the site of the 
impurity has the correct sign. If this is the case the impurity state is to he found close 
to the band edges at wi = *J(1 - U*). 

As said before the spatial extent is extracted from the exponential in (AS): 
exp(-2(z- z l ) , / M ) .  With w given by (10) the localization length is 

1: = (2u)-'. (11) 
For a weak impurity ( U  -+ 0) it is apparent that this is rather large since 
correspondingly the localized state wi is close to the band of extended (i.e. 1 -, 00) 

states. 
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3.2. Kink 
Proceeding in the Same manner with c from (As) we find [9] 

J(1-wz) = -utanh(z,). ('2) 
In view of the result in section 3.1 it is clear that the impurity level in the gap can 
exist only on one side of the kink (located at z = 0) with tanh z1 < 0 (for U > 0). 
Close to the centre of the kink (zl  + 0) this state approaches the hand of extended 
states, whereas far away (zl - co) it moves deeper into the gap, approaching the 
value of the homogeneous state. 

From the discussion before it is now clear that also the corresponding localization 
length of the impurity level in the presence of a kink is increased: 

1: = (2utanh lz,l)-' > 1: (13) 

since tanh 1x1 < 1. In summary the kink pushes the impurity state towards the hand 
and broadens it (in space). 

3.3. Polaron 

For a polaron excitation (located at z = 0) with profile A(=)  = 1 - 
K~/[wumsh(I~u(~+~u))msh(I~u(~-~u))] (wu = d(l-K;), z,, = (1/4K,,) In[(l+ 
ICu) / (  1-IC,,)] determining the spatial width of the polaron, i.e. the separation of kink 
and antikink located at fz,,, respectively, which as a bound pair form this polaron) 
we find from (All)  

J(1- w z )  = -u(wZA(z,) - w:) / (wz -U:). (14) 

A solution exists only for 1 > IwI > w,,, wo being the localized level of the polaron. 
A detailed analysis shows that this requires lzll < zo. This means that the impurity 
level we are looking for can exist only within the extension of the polaron. The 
impurity level wi moves toward the band of extended states as the impurity moves 
close to either kink or antikink i.e. I, + fz,,, whereas this level k well inside the 
gap if the impurity is located right at the centre of the polaron (2, = 0). The limiting 
cases wo + 0 (kink) and w,, -+ 1 (ground state) coincide with the previous results. 

Similarly, as in the kink case the spatial width is increased compared with the 
homogeneous case: 

I' = I:/[tanh(K,,(z, - z,,))tanh(If,,(z, + z,,))] (15) 

in lowest order in (I. This can easily be interpreted as both kink and antikink 
constituents of the polaron contributing an enhancement factor of 1/ tanh according 
to (13). 

4. Non-linear state 

The full m model consisting of the electronic part (1) plus an additional elastic 
energy for the (lattice) order parameter A(z)  

H e =  - d z A Z ( z )  
2x ' J  
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yields via a self-consistent treatment, i.e. minimizing to total energy with respect to 
A ( = ) ,  an essentially non-linear problem even without impurities present (for details 
see, for example, 113). This leads to localized electronic states in the gap for both 
kink and polaron excitations. From the corresponding Green functions @(z,z;w) 
(cf appendix) one can easily see that for the kink this localized state is to be. found 
at w = 0 with a spatial width of 1 (or to = l /A,  in rescaled units) whereas 
for the polaron there are WO states at w = fw, with a characteristic width of 

It is clear that in the presence of an impurity these states will be modified. The 
additional contribution from the second term in (8) to these poles is quite lengthy, 
here we concentrate on the effects in lowest order in U. It is tempting to replace f 
in this case simply by V = Ua, but since we are dealing with localized, unperturbed 
states, i.e. poles in b, special care is needed. 

For the kink this replacement is indeed possible and collecting only the terms 
proportional to the unit matrix in (8) we find 

I<,= d(1-W;). 

T r G ( z , z )  = 2 ( c o ( z , 2 ) +  ~ ~ ( c , ( ~ . , z , ) c , ( ~ , ~ ~ )  + i c z ( z , ~ I ) c 3 ( z , z l ) )  (17) 

using the symmetries in I and I’ of the coefficients of the unperturbed Green function e(,,.‘) = C C ; ( I , I ’ ) U ~ .  The first term in (17) gives the unperturbed, non-linear 
local density of states whereas the second term is the first-order change due  to the 
impurity at 2,. Extracting all contributions to the pole at w = 0 we finally arrive at 

T r G ( z , z ; w )  = (1 /w)[1 /2cosh2(1)+(U/4) (1+sgn(z-  z.,)tanhz)’ 

x ( 1 - s g n ( z - z l ) t a n h z l ) e x p ( - 2 ~ ~ - z , ( ) ] .  (18) 

The modification of the spectral weight is quite complicated in the neighbourhood of 
the impurity, but falls off at large distances with the same rate as the unperturbed 
state. 

An analogous calculation for the polaron is not as simple since the corresponding 
Green function ((A10) and (All)) has poles at w = fw, in all coeficients e,. 
Therefore the matrix inversion (8) which defines the scattering matrix t has to be 
performed in general, and only later the approximations for the behaviour in the 
neighbourhood of fw, can be inserted. Then one finds that in lowest order in U there 
are additional contributions besides the term Ua,. This procedure is also necessary 
in order to exclude any poles of higher order in the full Green function. The final 
result is quite lengthy and will not be reported here. We only note that qualitatively a 
similar behaviour as in the kink case is found, namely that the asymptotic localization 
length is the same as in the unperturbed case. 

5. Summary 

Using the unperturbed Green function for a kink and polaron conformation we have 
studied the electronic structure of an inhomogenous Peierls system in the presence of 
an impurity. We then have two mechanisms for the formation of localized intragap 
states which exhibit a mutual influence. We have found that the non-linear lattice 
structure (kink and polaron) pushes the impurity level towards the band edges, at 
the same time the spatial extent of this state is increased. On the other hand an 
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additional contribution to the spectral weight of the non-linear electronic state is 
found, its localization length remaining unchanged. 

We have denonstrated this interplay between disorder and non-linearity with the 
specific example of a bond impurity only. We expect that an analogous treatment in 
the case of a more general situation, i.e. additional site disorder, yields qualitatively 
similar results. 

There is, of course, one shortcoming of the present approach we have treated 
the electronic problems exactly for a given lattice structure (or order parameter 
A(z)). A fully Self-consistent treatment, however, needs a change of this structure 
due to the change of the electronic properties. Rchnically speaking one needs to 
solve, in addition to the equation for the Green function (equations (2) or (3)). the 
self-consistency equation 

A(z) = LJdw Tro,G(z,z;w) x 

from the minimization of the total energy with respect to A(z) .  This problem is 
quite involved, a more simplified treatment using the quasi-classical Green function 
[6] Seems to be more promising, although even in the case of a Born approximation 
for the impurity scattering, difficulties with the intragap states (poles) arise. Compared 
with previous results (51 we have nevertheless obtained some improvement as we have 
taken into account a non-homogeneous order parameter from the very beginning. 

The physically more interesting situation of many impurities is certainly more 
difficult. As mentioned in section 1 any averaging procedure restoring translational 
invariance neglects any local electron-impurity interaction and will not be able to 
capture the essential physics which produce the effects reported here for the one- 
impurity situation. On the other hand any too detailed impurity-kink (or polaron) 
interaction is not tractable in the many-impurity case. An approach which is somehow 
between these two limiting treatments is needed. 
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Appendix 

For the electronic problem / L ( z ) $ J ~ ( z )  = ~ ~ l / ) ~ ( z )  the Green function can be 
computed using the (known) eigenfunctions +,( z) through 

1 
G ( z , z ’ ; E )  = cl/))p(z)~ I E  - e p  *;(x’) 

P 

since the correctly normalized functions l/),(z) satisfy E, +P(z)+i (z ’ )  = ~ ( z - z ’ ) .  

In a modified notation f P , *  = up f iv, (from d > P ( z )  = (:;[:$) (cf [lo]) the 



Localized electronic states 

expression for the Green function can be simplified to 
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with 

This is convenient in view of the symmetries between positive and negative energy 
solutions f Now, using the h o w n  expressions for the eigenfunctions, we obtain for 
all cases (&h A, scaled to 1) the following. 

(a) Ground sfufe (A(z) = A,) 

1 
[ i E l  + ul + i d (  1 + E2)sgn (z - z‘)u3] 

2J(1+ E2) 
G(z, z’; E )  = - 

x ~ x P ( - ~ z - z ’ I J ( ~ + E ~ ) ) .  (A-9 

From the derivation it is clear that the appropriate limit as z - z’ of the last term 
vanishes (odd function of (z - z‘)), therefore we have (w = i E )  

G(z ,z ;w)  = - [ l /ZJ( l  - w Z ) ] ( w l +  ul )  (-46) 

such that the density of states given by the imaginary part of C reads 

n ( z ; w )  = (l/.)w/J(w2- 1) IwI > 1. (A? 

fb) Kink ( N z )  = A,taWz/E, ) ,  to = l /Au) 

G(z,z’;w) = -[1/4J(1-~Z)]{2wl+(l/~)[l-tt‘+J(1-~2)~t-t’~](uz-1) 

+(t+t’)u,+[t-t‘+2,/(  ~-w’)sgn(z-z’)]ia,) exp(-lz-+/(i-wZ)) 

(A*) 

with the abbreviations t = tanh(z),  1‘ = tanh(z’), e, scaled to 1. (In a different 
notation this has been given already in 1111.) For z’ -+ z we obtain from this 

G(z,z;w) = - [1 /2J(1-w2)] [wl+tanh(z)u ,  t (1/2wcoshZz)(u2-1)] .  (A9) 

Note that the last term gives an additional contribution to the density of states due 
to the pole at w = 0. 
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(c) Polaron (A(z) = A, - K,,[tanh( K,(z + I,,)) - tanh(K,(z - I,))]) 

G(z,z’ ;w) = - [ 1 / 4 J ( 1 - w 2 ) ] ~ p ( - ~ ~ - ~ ‘ ~ J ( 1 - w 2 ) )  2 [ w l + a l  + i sgn(z -z ’ )  [ 
x J ( l - w z ) ~ ~ ] + [ I ~ ~ : / ( w U 2 - w 2 ) 1  w[{l- t - tL+[J( l -w’)  

/KJllL - t L I ) ( 1 - a 2 ) + { 1 - t + t >  +[J(l-WZ)/Kulltt-t;I) 
x ( i+u2)n tu1{[ ( i -w  2 )/~c,i(t- + t ~  - t +  - t9+(2 - t - t !+ - t t t : )  

( 

+sgn(z-  z’)J(1-w2)[t+t‘ - t - t ; + ( ~ / ~ , , ) ( t -  -1‘ + t + - t ‘ ) ] )  

+ ~ ~ ~ { s ~ n ( z - ~ ‘ ) ~ ( ~ - w ~ ) [ ~ - t ~ t ~ - t + t ~ + ( ~ / ~ ~ ~ , , ) ( t ~ + t : - ~ + - t ~ ~ ~  

+ [ ( I  - w ) / I i , I ( t -  - t’ + t +  - 1; )  + t+t: - t - t k ) )  )] (-410) 
2 

with t* = tanh( K,,(I f I,)). 
For I = I( we then have 

G(I,I;w) = -[1/2J(1 -wz)][wl+ [I(:/(w:-w2)](w/2) 

x [ (1 / coshZK, (r+Z~) ) (a2+1)  -(l /cosh21C,(z-z,))(a2-1)] 

+{1 + (IC,2/w,)[w2/(w: - w ’ ) ] ( l / c ~ ~ h  K ~ ( z  + I,)) 
x ( l /cosh K,(I - q,))}uJ. (A l l )  

Here the additional poles are found at iw,,. 

Green functions have the property 
It is of further computational convenience that in all cases (a)-(c) the equal site 

G ( z , z ; w )  = a1 + ba ,  + cuI 

and 

d e t G =  a’- b 2 -  c2 = -I 
4 ’  
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